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ABSTRACT 
 

Past work on recording quality of remotely-collected 
speech data has demonstrated that some remote 
methods are adequate for broad-strokes formant 
analysis (such as comparing locations of phonemes in 
the vowel space), but none are suitable for fine-
grained formant analysis, such as sociolinguistic 
work. This study evaluates the adequacy of two 
remote recording techniques for formant analysis of 
vowel reduction, which requires an intermediate 
degree of specificity between these two extremes. It 
compares lossy recordings captured remotely via 
Gorilla, lossless smartphone recordings self-
administered by remote participants, and traditional 
recordings created in-person in a sound booth. 
Results show only minimal variation across recording 
methods, indicating that remote recording via Gorilla 
or self-administered smartphone recordings may 
prove viable options for remote data collection for 
similar studies, although the convenience of remote 
recruitment and recording are offset by higher rates 
of data loss and difficulties in annotation and formant 
extraction compared to traditional methods. 
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1. INTRODUCTION 

Researchers who wish to collect speech data remotely 
face an array of challenges; variation in compressive 
algorithms, hardware and environment, and sampling 
rates conspire to create an unpredictable landscape 
capable of exerting unequal impacts on the resultant 
recordings [1]. While it has long been known that 
variation in recording device and environment can 
lead to inconsistent acoustic measurements of speech 
[2], the body of research on the quality of remote 
recording of speech data has greatly expanded in 
recent years in response to the COVID-19 pandemic. 
With regard to the impact of remote data collection 
on analysis of vowel formants, studies have examined 
the effect of recording via videoconferencing apps 
[3]–[5] and varied hardware arrangements [1], [3], 
[6], [7], largely focusing on the degree of acoustic 
divergence from traditional recording setups. Many 

of these studies focused either on large-scale 
differences, such as the relative arrangement of 
vowels, or extremely nuanced differences, building a 
general consensus that analysis of large or relative 
formant differences can be carried out remotely under 
the right conditions, while work examining minor 
shifts will benefit from a traditional recording setting 
[5], [6]. The current study considers the effect of 
remote recording on an analysis of vowel reduction, 
a phenomenon that demands a degree of precision 
between these two extremes, by comparing data taken 
in a laboratory setting to that from two remote setups.  

1.1. Sources of Variation in Remote Recording 

Obstacles to obtaining high-quality recordings 
remotely are numerous, and only some are within 
researchers’ control. Loss of data due to background 
noise or microphone placement, for instance, can be 
offset by providing clear instructions, but even with 
participants’ best efforts, some disruption is likely. 
One source that can be controlled is the recording 
format: researchers must choose between lossy audio 
formats, which reduce file size by selectively deleting 
data, and lossless formats, which accept larger file 
sizes in exchange for more faithful recordings. 
Remote recordings taken online in real time, such as 
those obtained through Zoom, Skype, Teams, and 
Gorilla, are lossy, and some distortions to the vowel 
space relative to traditional recording are to be 
expected [3]–[5], although [4] was able to correct for 
these changes through Lobanov normalization. At 
least one study of remotely-collected speech data 
quality utilizing lossless recording, wherein 
participants recorded themselves on a device offline 
and then uploaded the file, found little difference in 
formant values from traditional recordings [3], 
suggesting that offline smartphone recordings might 
be the most viable alternative to in-person data 
collection for work considering suitably large effects.  

The hardware used for a remote study will also 
impact the formant values of resultant recordings. [6] 
examined data recorded using tablets, smartphones, 
laptops, and a more traditional microphone and found 
that laptops offered fewer discrepancies than tablets 
and smartphones, male vowel spaces underwent less 
distortion than female ones, and the 750-1500 Hz 
range was especially likely to be distorted, often 



affecting the low back vowels. Similarly, [7] 
compared formant values of Chinese vowels  
collected simultaneously across seven devices in two 
different settings (lab and conference room) and 
found that F1 and F2 values exhibited some 
systematic differences across devices, with greater 
variation in F2 compared to F1. These results suggest 
that remote subjects’ personal hardware should be 
suitable for formant analysis, provided the study is 
focused on large distinctions or relative arrangements 
of vowels, but perhaps not for fine-grained 
sociolinguistic analysis. Researchers should expect 
some variation to be introduced by the model of the 
recording device, and should be aware that direct 
comparison of formant values across recording 
devices is likely to lead to misleading conclusions.  

2. METHODS 

2.1. Recording Methods & Subjects 

An identical task was administered to two groups of 
participants, one remote (6M, 4F; M=35.6 yo, 
SD=10.65), one in-person (2M, 8F; M=20.9 yo, 
SD=1.96). All subjects were monolingual speakers of 
Midwestern American English. The in-person group 
completed the task in a sound-insulated booth 
wearing Sennheiser HD 380 Pro headphones, the 
stimuli were presented using PsychoPy [8], and their 
speech was recorded with a Shure KSM32 cardioid 
condenser microphone attached to a TubeMP preamp 
and digitized at 44.1 kHz. Data from the in-person 
group also served as a control for a separate study on 
bilingual vowel reduction (currently in preparation).  

The remote group was recruited via Prolific [9] 
and completed the task over Gorilla [10]. One set of 
recordings was taken using Gorilla’s Audio 
Recording Zone to generate .weba files using 
whatever microphone participants had for their 
computer. (.weba is a lossy format created with the 
OGG Vorbis compression codec [11].) A second, 
simultaneous recording was created by remote 
participants on their smartphone; this recording was a 
lossless .wav file recorded via a free app (Hokusai 
Audio Editor for Apple users and ASR Voice 
Recorder for Android owners). (One participant 
encountered a microphone error of some kind on their 
computer, and thus contributed only a smartphone 
recording and no Gorilla recording, leaving nine 
subjects in the Gorilla group.) Participants adjusted 
the app settings to at least a 128 kbps bitrate (Apple 
users selected an even higher-quality 16-bit setting) 
and a 44.1 kHz sampling rate. They were instructed 
to place both the smartphone and computer 
microphone in a stable position 6 – 10 inches from 
their mouth, or, in the case of a laptop-internal 

microphone, to sit at a comfortable distance from the 
screen. When the task was complete, subjects 
uploaded the smartphone recording to the researcher. 

2.2. Task & Procedure 

Participants completed a shadowing task in which 
they heard and repeated a sentence containing a target 
word with one of five vowels /ɑ, æ, ɛ, ɪ, ʌ/ in stressed 
or unstressed position. Stimuli were read by a male 
native speaker of Midwestern American English, 
recorded in the same manner as the in-person 
participants described in §2.1. All stressed vowels 
appeared in monosyllables, and unstressed vowels 
appeared in disyllables. Each target word had a 
counterpart in the study with identical structure for 
the target syllable, but different stress (i.e., bit ~ 
rabbit, text ~ context). Sixty target words (six for each 
stressed vowel and six for each unstressed vowel) 
were included; each subject repeated each target word 
twice. Target words were embedded in a unique 
carrier sentence of the form “the word X means…” 
where the phrase following “means” was relatively 
consistent in length, rhythm, and complexity.  

2.3. Analysis 

The beginning and end of the vowel were annotated 
by hand in Praat [12] and formant values were 
extracted at vowel midpoint using an LPC-based 
Praat script that allowed for manual review [13]. If 
the researcher observed that the automatic formant 
reading did not match the visual formant, a manual 
reading was substituted, taken by placing the cursor 
in the approximate center of the visible formant. 
Extracted formants were normalized using log-
additive regression normalization [14]. The 
Euclidean distance for each pair of stressed & 
unstressed target utterances (i.e., each speaker’s first 
repetition of bit ~ rabbit, each speaker’s second 
repetition of bit ~ rabbit , etc.) was calculated to 
provide a measure of the degree of centralization for 
unstressed vowels, calculated as shown in (1).  
 
(1)  𝐸𝐸𝐸𝐸𝐸𝐸 =  �(𝐹𝐹1𝑉𝑉1 − 𝐹𝐹1𝑉𝑉2)2 + (𝐹𝐹2𝑉𝑉1 − 𝐹𝐹2𝑉𝑉2)2    

 

3. RESULTS 

3.1. Euclidean Distance 

Euclidean distance provides a measure of the distance 
between two points: in this case, the degree of 
distance in F1xF2 space between a stressed vowel and 
its unstressed counterpart (see (1)). A linear mixed-
effects model was fit in R [15] to evaluate the degree 
to which recording method impacted Euclidean 



distance using lme4 [16] and lmerTest [17]. The best-
fitting model contained a response variable of 
Euclidean distance, fixed effects for Vowel 
(containing five levels /ɑ, æ, ɛ, ɪ, ʌ/) and Recording 
Method (with three levels, Gorilla, Smartphone, and 
In-Person), as well as an interaction term for Vowel 
by Recording Method and random intercepts for 
Subject and Item. Model results showed that the 
recordings taken via Gorilla differed significantly 
from those taken in-person (β = -.088, SE = .031, t = 
-2.865, p < 0.01), while the smartphone recordings 
did not differ significantly from the in-person data (β 
= -.047, SE = .030, t = -1.549, p = .131). 

 
Figure 1: Euclidean distance by Vowel and Recording 

Method 

Figure 1 displays the Euclidean distance of each 
vowel and recording method. As can be seen, the 
distribution of Euclidean distance is similar across 
recording methods for each vowel, but the Gorilla 
recordings diverge somewhat from the in-person data 
for vowels /ɑ/ and /ɛ/, while the smartphone 
recordings track more closely with the in-person data.  

3.2. F1 

To gain a more complete understanding of the 
variation in formant values across conditions, 
normalized formants were also examined. A linear 
mixed-effects model was fit with normalized F1 as a 
response variable; the best-fitting model included 
fixed effects for Vowel, Stress, and Recording 
Method, interaction terms for Vowel by Recording 
Method, Stress by Recording Method, and Vowel by 
Stress, and random intercepts for Subject and Item. 
Here, the results taken via Gorilla did not differ 
significantly from the in-person reference data (β =  
-.019, SE = .019, t = -.978, p = .334), although the 
uploaded data did (β = -.044, SE = .019, t = -2.306, p 
< .05). Figure 2 demonstrates that some of the 
divergence is shared by both the Gorilla and 
smartphone data (e.g., stressed /æ/) and thus was 
likely due to between-group differences, while other 

differences are limited only to the smartphone data 
and thus must be attributed to distortion introduced 
by the hardware or user behavior (i.e., microphone 
placement), as seen in several of the unstressed 
vowels. The smartphone recordings often exhibit a 
lower F1 than the Gorilla or in-person data, although 
this is not consistent across all vowels. 

 
Figure 2: Normalized F1 by Vowel, Stress, and 

Recording Method 

3.3. F2 

A third linear mixed-effects model took normalized 
F2 as a response variable; the best-fitting model also 
included fixed effects for Vowel, Stress, and 
Recording Method, all possible interactions among 
these, and random intercepts for Subject and Item. 
Both the Gorilla and smartphone recordings differed 
from the in-person data in F2 (Gorilla: β = .056, SE = 
.019, t = 3.103, p < .01; smartphone: β = .052, SE = 
.019, t = 2.873, p < .01). As shown in Figure 3, 
stressed /ɑ/ and /æ/ had a higher F2 in the remote 
recordings than the in-person data, while other 
vowels showed minor shifts in either direction across 
methods, though F2 was higher in remote recordings 
for most vowels.  

 
Figure 3: Normalized F2 by Vowel, Stress, and 

Recording Method 



3.4. Pillai scores 

Neither Euclidean distance nor direct comparison of 
formant values provides a measure of the degree of 
overlap between categories; to understand how 
distinct a stressed vowel and its unstressed analog are, 
the Pillai score is informative [18], [19]. Pillai scores 
closer to 0 indicate a great deal of overlap in the two 
categories, while scores approaching 1 mark that the 
two categories have little overlap. Pillai scores 
comparing each stressed and unstressed vowel for 
each speaker were calculated and are displayed in 
Figure 4; additionally, a linear mixed-effects model 
with a response variable of Pillai score, a random 
effect of Subject, and fixed effects of Vowel and 
Recording Method was fit.  There was no statistically 
significant difference between the Pillai scores from 
the in-person recordings and either the Gorilla (β =  
-.01, SE = .048, t = -.216, p = .831) or smartphone (β 
= -.07, SE = .048, t = -1.495, p = .149) recordings. 
Thus, the degree of overlap between reduced and 
unreduced instances of the five vowels examined was 
not meaningfully impacted by switching from a 
traditional in-person recording setup to either of the 
two remote recording designs tested.  

 
Figure 4: Pillai scores for each speaker and vowel pair 

4. DISCUSSION AND CONCLUSIONS 

The present study analyzed the reduction of English 
vowels using three recording methods: one group 
completed the task in a traditional laboratory setting, 
and a second group contributed two simultaneous 
remote recordings, one in a lossy format recorded on 
a laptop or desktop computer via Gorilla and the 
second in a lossless format recorded via smartphone. 
This design intentionally conflated between-speaker 
differences and variation due to remote participants’ 
individual devices, background noise, and 
microphone placement to determine whether the 
results of the study would materially differ  based on 
the researcher’s choice to collect data remotely or in 
person. Analysis of normalized formant values across 

recording conditions reflected the findings of earlier 
studies: some variation was detected between the in-
person and remote recordings, with the most notable 
deviance found in low or back vowels. Measures of 
vowel reduction showed minimal variation across 
recording methods: no statistically detectable 
difference emerged when reduction was quantified 
through Pillai scores, and when Euclidean distance 
was used, the Gorilla recordings but not the 
smartphone recordings differed significantly from the 
traditionally-recorded data. Given that the Gorilla 
recordings were encoded in lossy .weba files, it is not 
surprising that they would show greater deviance 
from the in-person data. The most obvious changes 
were in low or back vowels, which accords with the 
findings of [6].  

The relative success of the smartphone recording 
group at replicating the results of an in-person study 
may be attributed to a handful of causes. First, vowel 
reduction is both a relative phenomenon, in that any 
analysis of it must quantify the degree of change of a 
vowel according to its prosodic prominence, rather 
than its absolute position in the vowel space. Relative 
measures are naturally more forgiving than absolute 
ones when searching for differences across platforms, 
since direct comparison across recording conditions 
is not required. Secondly, the scale of difference 
needed to effect change across groups is relatively 
large for vowel reduction in comparison to 
sociolinguistic studies, where the aim of the analysis 
is to capture the most minute of differences. Finally, 
it is possible that the normalization procedure served 
to mask some differences that otherwise would have 
been salient. (Formants were normalized using a 
single category for each vowel across recording 
conditions to ensure the resultant values were on a 
single scale.) In closing, the present results indicate 
that remotely-collected lossless smartphone 
recordings may be a viable alternative for work 
relying on relative formant values or expecting 
relatively large shifts in formants across conditions. 
Recordings taken via Gorilla exhibited greater 
distortions and should not be used for formant 
analysis. As others have noted, researchers planning 
remote data collection should prepare for higher rates 
of data loss and background noise, and should adjust 
their recruitment targets accordingly.  
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